Southwest Fisheries Center Administrative Report No. 13H,IDQ

BOUNDS BY DOMINANCE FOR FIXED-WEIGHT AGGREGATED

MARKOV DECISION PROCESSES

Roy Mendelssohn
Southwest Fisheries Center
National Marine Fisheries Service
National Oceanic and Atmospheric Administration
Honolulu, Hawaii 96812




ABSTRACT

Bounds by dominance for aggregated Markov decision processes are
developed. These bounds only require the evaluation of K columns as
compared to N°*M columns, K < N M, and N *M is the total ﬁumber of
actions in all states combined. Separate bounds are given when
only actions within a state are aggregated, when states are aggregated
only in the rows of the linear programming solution, and for the
general aggregate problem. A procedure to tighten the bounds is

discussed, and a numerical example is given.
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2. NOTATION

In each period, a state x from a finite set of states is observed,
a feasible action y is taken, and a transistion is made to state ] with
probability p(x, j:y). When state x 1s observed and decision y is
taken, an expected return of g(x, y) is received. The return is
discounted through time b§ a discount factor o, 0 < a < 1.

It is assumed that there are N states, N finite, and without loss
of generality, the same M feasible actions per state. It is desired to
maximize the expected total return over an infinite planning horizonm,
and it is assumed that the one-period returns are uniformly bounded
from below. This is sufficient to assume that the returns are nonnegative.
Given these assumptions, the well known LP solution to this MDP is

(d'Epenoux [1])

N M

*
z = maximize I I g(x, y) ulx, y)
x=1y=1

N M

gsubject to z L (6 - ap(x, j:y)) u(x, y) <1 (2.1)
x3 -
x=1y=1
j‘-l’ ...’ N
u(x, y) >0 x=1, ..., §§ y= 1, ..., M

1 if x=j
where ij = and the inequalities in (2.1) are justified

0 if x # 3

by the nonnegativity of the expected return. Optimal solutions to (2.1)

* *
are denoted by u , and optimal dual variables by v .




A major deterrent to real world use of Markov decision processes (MDPs)
is the large problem size that may arise. For example, some fisheries
models may have a seven—dimensional state vector. If only 10 grid
points are used in each dimension, the resulting MDP would have 10
million states, and each policy would have a transistion matrix too
large to calculate even one jteration of successive approximations.
Recently, several authors (Hinderer and Hubner [2], White [6], Whitt
[7, 8]) have studied the following approach for approximating MDPs:
aggregate the states and actions of the original model into a smaller
model, solve this aggregated or reduced model, extend the solution of
the aggregated model to the original model, and calculate bounds on the
loss in value from using this suboptimal policy. These bounds are a
posteriori bounds, and require at least the éomputational equivalent of
one iteration of successive approximations on the original model. For
problems of similar size as the example above, it would not be practical
to calculate the bounds.

In this paper, some results of Zipkin [9, 10] for aggregated linear
programming problems (LPs) are used to find a family of bounds that
require less computational effort but are looser bounds. These bounds
allow the modeler to solve a reduced problem of one size and calculate
the bounds on an aggregate problem of a different size, thus allowing
the modeler some choice between tightness of the bound and computational
effort. A method to improve these ''bounds by dominance" is given, and
a numerical example is presented where the improved bounds by dominance
are almost as tight as the best improved bound, but the computational

effort was significantly less.
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The notation and the method of aggregation and disaggregation follows
Zipkin [9, 10]. The reader is referred to [9, 10] for more details. Let
p be the N x N* M constraint matrix in (2.1), and let G be the N*M-vector
of objective function coefficients in (2.1). Let g ='{§k;‘k m 1, .., K}
be a partition of {1, ..., N+ M}, and let p -'{ﬁl: =1, ..., L} be a
partition of {1, ..., N}. Let pk be the submatrix of p consisting of
those columns whose indices are in §k’ Py the submatrix whose rows have
indices in il’ and p: the submatrix whose columns and rows have indices

in §k and iz. Let Gk be the components of G whose indices are in Sk'
Let cK and f% be nonnegative vectors of appropriate lengths, whose
components sum to unity. Then a fixed-weight column aggregated problem,

fixed-weight row aggregated problem and doubly aggregated problem are

defined by the following transformations:

COLUMN ROW DOUBLY
oK . KK B, = £ & o kK
"k k k ~ 2: k k :
P =PcC Py = £ Py
P = ()
§ - %1

These transformations are equivalent to the projection operators in
Whitt [7].

The new variables for the column and doubly aggregated problems are
denoted by U, and the new dual variables by V. Optimal values for the
aggregated problem are denoted ﬁ, V. For example, the LP for the doubly

aggregated problem is:




K .
Z = maximize I Gkuk
k=1

(2.3)

s.t. pu<b

u>0

The solution of the aggregated problem is disaggregated using the
jdentical transformation; for example, if rows are aggregated, then v
is disaggregated as 32 = vzfz, where GL ig a vector with as many elements
as in iz. The disaggregated variables will be denoted 4, v. These
transformations are Whitt's [7] extension operators.

Let 0 = {Sk: k=1, ..., K} and p = {Rzz £ =1, ..., L} be any two
partitions of {1, ..., N «M} and {1, ..., N} perhaps differing from
o, p. Let {dj} and {ei} be known positive numbers, and {wk} and {qz}

known nonnegative numbers.

Theorem (Zipkin [10]): If it is known a priori that:

*
L du, £w k=1, ..., K
jes, 33 k
(2.4)
*
Zeiviﬁq L =1, ., L
1ER£ L
~ - * ~
then z - € <z <z+e€E
X - N
where e: = I max (Gj - %j)/dj W (2.5a)
k=1jes L ) |
L - 1n*
€ = I max |(p,u - 1)/e q (2.5b)
* ga1lter o ] B
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Three cases are treated separately in the next section. In the first
i N
case, only actions within a state can be aggregated. These partitions of

{1, ..., M} will be denoted by Bx = {gxk: k=1, ..., K} with o= E?X.

The second case has columns aggregated as in the first case, but states
may also be aggregated in the rows. The third case is the more general
doubly aggregated problem.

For any group of partitions ox = {Sxk: k=1, ...y K} define

Gk(x).z max G(x, y) and pk(x, §) > max p(x, j:y). Let {dxk}’ {ka}
yeSxk yEsxk

be the obvious redefinitions of {dk} and {wk}. The results of this
paper utilize the fact that Gk(x) and pk(x, j) can be used to simplify
(2.5). The original bounds (2.5), like the bounds in Whitt [7], at
least require evaluating one iteration of successive approximation. The

new bounds do not, but with an obvious loss of value.

3. RESULTS
Only the proof fer the first theorem will be given in detail, since
the proofs of the other theorems are similar. The main result used is
the fact that "mex I < I max." Theorem 3.1 gives the equivalent bound
by dominance to (2.5a).

*
Theorem 3.1 Ef only actions within a state are aggregated, let z

be the value of a solution to the original 1P and z the value of a

e S . — A—————e  SMmm

solution to the aggregateﬂ LP, then:




Nk K k ¥
where €, -xfl kEl [(G (x) + aZp (x, :l)i"r:l - Gx)/dxk L (3.1)

Proof. The theorem would be true if for each of the N°K columns in
the aggregate problem:
k k “~ hpd ~ -~
G (x) + alp (x, j)v:l - vx_>_ max {G(x, y) + alp(x, j:y)vJ - vy
3 SSxk
However, the result is immediate from the definition of Gk(x), pk(x, .

O

The bound (3.1) requires the evaluation of N°® K inner products
between two N-vectors, while (2.5a) requires the evaluation of N°* M
inner products between two N-vectors. For N large and K<<M, the
computational savings is substantial. A likely procedure would be to
choose K < K<<M. Note also that the values of Gk(x), pk(x, j) need not
be found by sorting through the constraint matrix, but can be well
chosen values based on knowledge of the problem.

1f states are aggregated together only in the rows, then the upper
bound in theorem 3.1 remains valid. However, the lower bound must be

altered. Define p,(x:y) = min p(x, j:y), €, = min e, and for each
L L h

jERy jeRy
M .
jeRz, W(j) = I u(j, y). For most usefully aggregated problems, only
y=1

one value of u(j, y) will be nonzero. Then let ﬁ!. = max u(j).
: jeRy
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Theorem 3.2 The assumptions of theorem 3.1, plus states being

aggregated in the rows only, imply

+

L N M
where €_ -zzl{ z z l:uz - apz(x:y)ﬁ(x, y) -1 ey } qp (3.2)
= x=1g=1

o

The bound in theorem 3.2 involves evaluating L inner products
between two NeM-vectors, while (2.5b) requires evaluating N inner
products between two N*M-vectors. For N°M large and L<<N, this is a
substantial saving. Both theorems3.l and 3.2 require that the optimal
solution or optimal dual variables be disaggregated, and that the upper
(resp. lower) bounds Gk(x), pk(x, j) (resp. pz(x:y)> be based on the
original problem. In fact, it is mot necessary to totally disaggregate
the final solution of the aggregate LP, and the bounds can be based
solely on the partially aggregated tableau. This is proven for the
upper bound in theorem 3.2. The lower bound is proven similarly.
Define p(x, %:y) as the aggregate probability of going from state x to
the new row-aggregate state £ when action y has been taken. And let
Ek(X.l) > max p(x, L:y).

yt‘:Sxk

* ~
Theorem 3.3 The assumptions of theorem 3.2imply z < 2 + ef_

2 N K [k k *
where e, = L X G (x) +alp (x, 2V, - G] d w (3.3)
—_— + <=1 k=1 ) 2 b4 xk! "xk
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K
Proof. From (2.5a), I. |g(x, y) +alp(x, 1)V, -V
k=1 j I x

K -
-5 [g ) tar T a1 GpEP - T,
k=1] leRz

K p—
- Y el - 3
I fg(x,y) +alvy I p(x, 3:y)fy vx:l

k=1[ 2 “jeRry

K -— -
= I |g(x, y) +alp(x, &:y)v, - v,
k=1 ]

The rest of the proof is the same as the proof of theorem 3.1.
O

The bound in theorem (3.3) requires evaluating N *K inner products
between two L-vectors instead of two N-vectors. For L<<N, the increased
savings in computational effort is significant. If states are to be
aggregated in the columns also, it is reasonable to assume that an
aggregate would be formed by aggregating the same actions between states
to produce a new aggregate state with M action but with aggregate
transition probabilities, and then to further aggregate the actions
within the aggregate state. Let O -‘{Sk:k =1, ..., K} be a partition
of {1, ..., N}, and Sk index the states that have been (column) aggregated

together. Let Gk = minimum ¥V . Then theorem 3.3 extends to the more
x€S
k

general aggregation scheme by substituting Gk for ;x in (3.3)
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4. EXTENSIONS AND EXAMPLES

In Mendelssohn [4], a method of Kallio [3] is used to improve all
of the bounds discussed in this paper. This is donme by including the
constraints (2.4) directly into the LP (2.1), and also adding the
additional constraint that the vector of variables u must lie in the
set U= {u]u=0u, 6eR}. This additional comstraint produces a
parametric family of values z*(e) and a parametric family of bounds.
At 0 = 1, the bounds are equivalent to the original bounds. A gearch
procedure is used to find the value of 6 that produces the smallest
bound.

It has been shown mathematically that the bounds by dominance
require significantly less computation; it would be hoped that this
is without a concomitant loss in the tightness of the bound. As an
example, a model suggested by Mathews (11] for salmon rums in the
Naknek River is analyzed. The "original problem has a state space
of 31 points lying between 0 and 7 million fish. The aggregate

Table I, II problem and its solution are presented in Table I, and Table II gilves
the variable definitions, the stochastic transistion function, and
four different error bounds calculated from this example.

As can be seen in Table II, the bounds by dominance are not tight
at all, but the improved bounds by dominance are almost as tight as
the best available bound. One example does not imply that improved
bounds by dominance will always, or even often, provide tight bounds.
However, the example shows that they can provide tight bounds while
requiring significantly less computational effort; further computational
work needs to be performed on real life models to study the behavior

of these bounds.
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A more intriguing question, which has not been examined at all, is
if any of the bounds are monotone in the sense that a tighter bound
implies that the expected value of the extended policy on the original
model is greater. Such monotonicity properties would provide clear
guidelines for modeling. Finally, the Russian literature over the last %
decade or so has studied processes that iteratively aggregate using the
extended solution from the previous aggregate problem to reaggregate
the model (see Vakhutinsky, Dudkin, and Ryvkin [5] and references
therein). A combination of iterative aggregation combined with bounds
to guide the reaggregation process would appear to be a fruitful area

of future research.
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TABLE 1

Aggregated LP for Naknek salmon

Upper
partition Variables in the Weighting for bound
partition aggregation o
k
0 0.125, Zero on uo
1 us Uy ; xeX X 35
1/30 on uo'l25
x
0.25,
2 {u ; xEX} 1/29 on each column 10
0.375
3 u_ ; xe€X 1/28 on each column 10
005
4 u " x€X 1/27 on each column 10
0.625
5 u_ s xe€X 1/26 on each column 10
0.75
6 u s xeX 1/25 on each column 1,000
0.875
7 u ; x€X 1/24 on each column 10
8 { )1(, xex} 1/23 on each column 10
9 {u)];.IZS; x € Xp and 1/22 on each column 10

{uy, 9 > x > 1.125;
x a— ——

1.25 <y £ x5 %, yex}

Zero on each column

Gk(x, y) = {9, 8.75, 8.625, 8.5, 8.375, 8.25, 8.125, 8, 7.875}

k. (1, 0.7, 0.7, 0.41, 0.7, 0.7, 0.7, 0.7, 0.7, 0.2,

0.7, 0.7, 0.7, 0.7, 0.7, 0.25, 0.7, 0.7, 0.7, 0.7,

0.7, 0.7, 0.7, 0.7, 0.7, 0.7, 0.7, 0.7, 0.7, 0.7,

0.7} for all k =1, ..., K.

The optimal dual variables for the aggregated LP are:

f = {0, 0, 321.0216, 92.4958, 0, 0, 0, 0, O, 179.4263,

0, 0, 0, 0, 0, 31.3039, 0, 0, 0, 0, 0, O, 0, 0, O,

o, 0, 0, 0, O, 0}




TABLE I1I

Example of the pifferent Bounds

Model: Salmon runs in the Naknek River:

x, = Number of fish that return to river at time t
Y, = Number of fish released to spawn at end of time t
X, =V, = Catch = One-period return
x -

e+l 6.727 exp(d) y, exp{-0.859 yt}

d ~ N(O, 0.1444)

; *
Original problem has 31 states, z = 1918.1672

Improved bounds
Regular bounds Bounds by dominance Improved bounds by dominance

* *
624.25<z <14,849.09 624.25<z <347,663 624.25< 2" <9,051.62 626.25<z" <9,147.00




